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20. ABSTRACT

The term “semantic nets,” in its broadest sense, has become virtually meaningless. It is applied to
systems which, as a class, lack distinctive representational and computational properties vis a vis
other knowledge representation (KR) schemes. This terminological problem is not due to lack of
substance or coherence of work done under the semantic net banner. Rather, it is due to
convergence of the major KR schemes: the representational and computational strategies employed
in semantic net systems are abstractly equivalent to those employed in virtually ¢/l state-of-the-art
systems incorporating a substantial propositional knowledge base, whether they are described as
logic-based, frame-based, rule-based, or something else. In particular, I will argue that using a
graphi-theoretic propositional representation does not automatically distinguish it from others: even
sets of PC formulas, abstractly viewed, are graphs. Nor is “proximity-based” inference (using
graph-theoretic distance) automatically distinctive, since even resolution strategies (with reasonable
indexing schemes) are proximity-based in the abstract; nor is hierarchic property inheritance any
longer distinctive, given its availability in state-of-the-art logic-based, frame-based, and rule-based
systems. So I urge some more restrictive, and hence more meaningful use of the term *“semantic
nets” than is the current practice.
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Abstract. The term “semantic nets”, in its broadest sense, has
become virtually meaningless. It is applied to systems which, as a
class, lack distinctive representational and computational properties
vis a vis other knowledge representation (KR) schemes. This ter-
minolngical problem is not due to lack of substance or coherence of
work done under the semantic net banner. Rather, it is due to con-
vergence of the major KR schemes: the representational and compu-
tational strategies employed in semantic net systems are abstractly
equivalent to those employed in virtually allstate-of-the-art systems
incorporating a substantial propositional knowledge base, whether
they are described as logic-based, frame-based, rule-based, or some-
thing else. In particular, I will argue that using a graph-theoretic
propositional representation does not automatically distinguish it
from others: even sets of PC formulas, abstractly viewed, are graphs.
Nor is “proximity-based” inference (using graph-theoretic distance)
automatically distinctive, since even resolution strategies (with rea-
sonable indexing schemes) are proximity-based in the abstract; nor is
hierarchic property inheritance any longer distinctive, given its avail-
ability in state-of-the-art logic-based, frame-based, and rule-based
systems. So I urge some more restrictive, and hence more meaning-
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1 Introduction

In Al, as in any science, ideas do not evolve linearly. There is no universally
shared terminology, let alone a universally assimilated body of knowledge, which
is augmented step-by-step by the “advances” we (as practitioners) announce.
Rather, ideas tend to emerge and evolve in variant forms in many places, in
more or less parallel fashion.

On the face of it, this parallelism is wasteful, but it has compelling causes.
For one thing, too much is being written for any of us to read, so naturally we
fragment into colonies that are internally cohesive, but only loosely integrated
with each other. It is often faster to rediscover something within the framework
of one’s colony than to glean it from the writings of another. For another, our
numbers are legion and our sources of inspiration widely shared, so if a good idea
occurs to one of us, it is apt to occur to many; since ideas are our livelihood,
we are disposed to emphasize differences - however superficial — rather than
similarities, and jealously defend our terminological niches. Besides, we may
argue, evolution thrives on diversity.

However, in the evolution of a set of related scientific notions, there is a time
to explore diverse alternatives, and later, a time to consolidate ideas, discard-
ing artificial distinctions and inconsistent terminology. It seems to me that the
time for such a consolidation and redefinition has arrived in the area of KR. In
particular, I want to argue that the term “semantic nets” has become virtually
meaningless, at least i1 its broadest sense. (By the same token, questions can
also be raised about “frame-based sytems”, “rule-based systems”, and various
other KR terms, but I would like to focus on what I know best.) It no longer
signifies an objectively distinguishable species in the KR taxonomy. All KR
schemes [ have lately encountered, which aspire to cope with a large, general
propositional knowledge base, qualify as semantic nets, appropriately viewed.
However, their designers often don’t view them that way, preferring such terms
as “frame-based system”, “semantic database”, “blackboard”, or some neolo-
gism. The choice of KR terminology seems to be more a matter of intellectual
affiliation, than . ne of substance.

More specifically, I will argue that semantic nets fail to be distinctive in the
way they (1) represent propositions, (2) cluster information for access, (3) handle
property inheritance, and (4) handle general inference; in other words, they lack
distinctive representational properties (i.e., 1) and distinctive computational
properties (i.e., 2-4). Certain propagation mechanisms, notably “spreading ac-
tivation”, “intersection search”, or “inference propagation” have sometimes been
regarded as earmarks of semantic nets, but since most extant semantic nets lack
such mechanisms, they cannot be considered criterial in current usage. One way
of re-invigorating the term, I will suggest, would be to restrict it to just such
active networks. Another would be to reserve it for certain specialized repre-




sentations (such as taxonomic and temporal graphs) which use graph-theoretic
notions in an essential, nontrivial way.

2 Representational Properties of Semantic Nets

By the representationa}, as opposed to computational, properties of semantic
nets | mean those aspects of their structure which are interpretable as denoling
something in the domain: individuals, properties, relations, magnitudes, facts,
states of affairs, and so on. With respect to these representational properties,
semantic nets have often been called notational variants of logic (or rathcr, of
various logics). Iu a certain sense, I concur; but what exactly does this mean?

Let us note at once that the term “notational” is prejudicial: it suggests
that we are concerned with notations on paper (or display screens), whereas my
concern here is with information structures in computers. These two notions
of representation are related; for instance, sets of predicate logic expressions
on paper and node-and-link diagrams (of the right type) would appear to be
expressively equivalent just in case their corresponding computer realizations
are expressively equivalent. Furthermore, it is hard to write about propositional
representations in computers without resorting to some notation like bracketed
expressicns or diagrams on paper. However, if we blur the distinction between
these two notions of representation, we are apt to get tangled up in questions
that aic not at issue here. for instance, whether node-and-link drawings provide
more perspicuous propositional representations than bracketed expressions.

<

So in what follows, all references to propositional representations or “nota-
tions” are to be underztood as references to information structures in computers.
This does not mean. of course, that we are concerned with machine-oriented,
hardware-level information structures, but rather with structures at some ap-
propriate level of ahstraction, such as the level of symbolic expressions or graphs.

A propositioal representation (in computers as well as on paper) has two
parts: asyntax, and a semantics. (There is usually an associated calculus as well,
for establishing new propositions from given ones, but that is a computational
matter.) Suppose that two representations admit transformations from each to
the other, such that any syntactically well-formed knowledge set (for lack of
a hetter word) in one representation is effectively mapped into a well-formed
knowledge set in the other, and furthermore, the original knowledge set and
its transform are semantically equivalent. {Accept for the moment that this
last notion can be made precise - I will elaborate shortly.) Then we have two
effectively interchangable representations, enabling us to express exactly the
same things. Can we therefore regard them as “notational” variants (more
exactly, structural variants)?

It may be felt that this is not qu‘*z enough. After all, there seems to be a




sentations (such as taxonomic and temporal graphs) which use graph-theoretic
notions in an essential, nontrivial way.

2 Representational Properties of Semantic Nets

By the representational, as opposed to computational, properties of semantic
nets, I mean those aspects of their structure which are interpretable as denoting
something in the domain: individuals, properties, relations, magnitudes, facts,
states of affairs, and so on. With respect to these representational properties,
semantic nets have often been called notational variants of logic (or rather, of
various logics). In a certain sense, I concur; but what exactly does this mean?

Let us note at once that the term “notational” is prejudicial: it suggests
that we are concerned with notations on paper (or display screens), whereas my
concern here is with informatio: structures in computers. These two notions
of representation are related; for instance, sets of predicate logic expressions
on paper and node-and-link diagrams (of the right type) would appear to be
expressively equivalent just in case their corresponding computer realizations
are expressively equivalent. Furthermore, it is hard to write about propositional
representations in computers without resorting to some notation like bracketed
expressions or diagrams on paper. However, if we blur the distinction between
these two notions of representation, we are apt to get tangled up in questions
that are not at issue here: for instance, whether node-and-link drawings provide
more perspicuous propositional representations than bracketed expressions.

So in what follows, all references to propositional representations or “nota-
tions” are to be understood as references to information structures in computers.
This does not mean, of course, that we are concerned with machine-oriented,
hardware-level information structures, but rather with structures at some ap-
propriate level of abstraction, such as the level of symbolic expressions or graphs.

A propositioal representation (in computers as well as on paper) has two
parts: asyntax, and a semantics. (There is usually an associated calculus as well,
for establishing new propositions from given ones, but that is a computational
matter.) Suppose that two representations admit transformations from each to
the other, such that any syntactically well-formed knowledge set {for lack of
a better word) in one representation is effectively mapped into a well-formed
knowledge set in the other, and furthermore, the original knowledge set and
its transform are semantically equivalent. (Accept for the moment that this
last notion can be made precise — I will elaborate shortly.) Then we have two
effectively interchangable representations, enabling us tc express exactly the
same things. Can we therefore regnrd them as “notational” variants (more
exactly, structural variants)?

It may be felt that this is not quite enough. After all, there seems to be a



stmilar correspondence between, say, programs of a universal Turing machine
(i.e., tape expressions describing some other, or the same, Turing machine)
and Lisp programs: there are effective (in fact, primitive recursive) mappings
from each to the other, such that each program and its transform have exactly
the same partial recursive function as extension (or the same class of partial
recursive functions, if we allow for different ways of interpreting inputs and
outputs as numbers or other abstract objects.) Yet the two representations
may be so wildly different, and so lacking in any structural resemblance, that
we would hesitate to call thern mere “notational variants” of each other. (When
we talk about a notational variant of Lisp, we might be thinking of something
like Interlisp, but hardly universal Turing machine programs!)

However, there’s more to the transformations from nets to sets of formulas,
and the reverse, than mere effectiveness: they can be chosen to be tsomorphisms
with certain special properties. These special properties pertain to the mean-
ingful ezpressions (meaningful parts) making up two corresponding knowledge
sets. Specifically, such an isomorphism maps the atomic and compound ex-
pressions of one formalism to those of the other in a way that (i) associates
with each interpretable atomic expression of one knowledge set an interpretable
atomic expression of the transformed knowledge set which admits exactly the
same interpretations (such as individuals in the domain of discourse, sets or re-
lations over such individuals, intensions, properties, or what have you); and (ii)
preserves semantically significant structural features of compound expressions
(such as the subexpression relation, and subexpression ordering).

Such an isomorphism induces a very strong semantic correspondence: the
two knowledge sets have the same “valuations”, and hence the same models. By
a valuation of a knowledge set 1 mean an assignment of semantic values to all of
its meaningful expressions (parts), beginning with admissible interpretations of
its interpretable atomic expressions and continuing with values for compound
expressions determined in accordance with the <. iiantic rules of the formalism
{in logic, the rules for interpreting functional expressions, atomic formulas, log-
ically compound formulas, and quantified formulas). A model of a knowledge
set 1s a valuation that renders its “top-level” proposition-denoting expressions
true.

Let me illustrate. Besides clarifying some of the preceding notions and
claims, the illustration will serve to ailay the following sort of skepticism, which
experienced network theorists may by now feel: how can there be an isomor-
phism between nets and sets of formulas, when one of the clearest intuitions
about nets is that they introduce just one node for each distinct entity, whereas
sets of formulas duplicate individual tokens with prodigal abandon? The answer
contained in the illustration is that we need not view sets of formulas in terms
of the distinct tokens they contain, but rather can view them in terms of the
distinct ezpressions they contain, however many occurrences (tokens) of those




expressions there may be.

The illustration may strike the reader as a sort of extended pun — and so
it is. I will define a particular, “bare-bones” type of semantic net called an
s-nel, serving as a propositional representation but devoid of any specific access
structures or other computational features. This type of net is so closely related
to logic that I will not need to construct an explicit isomorphism from one to
the other. In fact it s logic (FOPC to be exact), but couched in terms that
make it appear to be a net (a directed, acyclic, labelled graph). Thus from a
purely representational perspective, formulas — appropriately viewed —~ are nets.

To define s-nets, we begin with vertices, defined as the following types of
expressions: :

constant verlices Cy,Cay ...
variable vertices ZT1,Ta,...
function vertices  f, fi,....f%, f3, ...
(intuitively, the upper index indicates adicity)
predicate vertices P}, P}, .., PZ P2, ..
quantifier vertices V,3
operator vertices V,A,~,D

In the following i, n are any positive integers.

term verter: any constant or variable vertex, or any expressionn of form
(fft1...t,) where ty,...,t, are term vertices.

proposttional verter: any expression of form (P ty...1,) where t;,...,1, are
term vertices; or any expression of form (@ z R) where Q is a quantifier
vertex, z is a variable vertex, and R is a propositional vertex; or any
expression of form (VRS),(ARS),(~ R),or (O RS), where R and S are
propositional vertices.

We use labeled-edge terminology to describe the relation between an expres-
sion and its immediate (ordered) constituents. In a vertex V of form (O V;...V;)
(where necessarily O is a function, predicate, quantifier, or operator vertex), we
say that there is a labelled directed edge (V, O, OP) from vertex V to vertex O
and a labelled directed edge (V, V;,1) from vertex V to vertex V; fori =1,....n.

Finally, we define an s-nef as a finite set of propositional vertices.

It is patently obvious that an s-net is just a set of FOPC formulas, in a
slightly altered terminologocal guise. Yet an s-net also meets the minimal intu-
itive requirement for a semantic net, that of being a graphical structure (with
vertices capable of representing things, concepts, and propositions, and edges
supplying the “glue” that binds together the parts of functional concepts and
propositions):

(1)



Theorem. The vertices and edges of an s-net form a directed, acyclic labelled
graph without isolated vertices.

Proof. Briefly, this follows from the fact that the “proper subexpression”
relation is irreflexive, and atomic vertices occur only as constituents of
nonatomic ones. In more detail, a directed labelled graph is any triple of
sets {V1,...,Vu}, {E1, -, Em}, {L1,...,Li}, where each E; (1 <i < m)is
a triple (V;, Vi, L) such that 1 < j,k <nand L € {L,,..., Li}. Obviously
the vertex set, edge set, and label set {OP, 1,..., N} where N is the small-
est integer > 2 such that every function vertex f]' and predicate vertex

P in the s-net has n < N, form a directed labelled graph.

1]

An acyclic graph is one not containing a closed path, i.e., a subset of
edges {("]U VJ':lel)’ (‘/jz"/fs’Lln)! e (VJ'-’VJ'--H’LI-)}’ (s > 1), such
that j; = j;4+1. In an s-net, edges correspond to the “immediate subex-
pression” relation. Paths, therefore, correspond to the “proper subexpres-
sion” relation (not necessarily immediate). Hence if an s-net contained a
closed path, it would contain an expression which has itself as a proper
subexpression, an obvious impossibility.

An isolated vertex of a graph is one which does not occur in any edge.
Clearly, an s-net has no isolated vertices, since each immediate subexpres-
sion of each non-atomic vertex is by definition not isolated (i.e., it occurs
in the edge from the embedding vertex to it), and atomic vertices occur
only as subexpressions of non-atomic ones (ultimately, of the propositional
vertices comprising the s-npet). O

Our sample isomorphism, then, is just the identity map from FOPC expres-
sions to s-net vertices (or vice versa), these being one and the same thing. The
claim about semantic equivalence (admitting the same valuations) 1s also triv-
ially true as long as we agree to interpret s-net vertices just as we would logical
expressions (which they are).

Of course, demonstrating isomorphism/equivalence for s-nets and FOPC
doesn’t demonstrate it for any of the many subspecies of nets and their pu-
tative logical counterparts. But at least it indicates how to proceed. A few
further remarks are in order. s-nets are similar (in terms of representational
properties) to the sorts of nets proposed by Shapiro (1971), Rumelhart et al.
(1972), Schubert (1976), and many later schemes. In particular, there are ex-
plicit proposition nodes (vertices), and edge labels serve essentially to indicate
argument order (though they may be chosen to remind us of uniformities across
predicates: SUBJ, OBJ, and the like). Another popular type of net uses edges
themselves as representations of binary predications, the labels being predicate
symbols and thus freely interpretable (e.g., Winston 1970, Deliyanni & Kowal-
ski 1979, Nilsson 1980). Here we naturally need a slightly different strategy for
demonstrating the desired sort of isomorphism/equivalence. For instance, we




might define a “propositional edge” as an expression of form (P t;t;) where P is
an edge label (drawn from a set of labels interpretable as binary relations) and
!y, to are term vertices. A (bare-bones) semantic net of this type would ulti-
mately be defined as just a set of propositional edges - these entail the presence
of the vertices they connect.

Also, many semaintic net theorists have taken as their basic binary relations
the “ipstance” relation between objects or events and their types, the “isa”
relation beiween subtypes and supertypes, and case relations such as “agent-
of", “object-of”, “recipient-of”, etc., tying participants in cvents to those events.
This particular viewpoint appears to present no special obstacles to the sort
of equivalence construction I have indicated. Even if its proponents were to
deny that relationships such as (agent-of John Kissing-eventl) can be formally
evaluated in the manner of logical predications, it is hard to conceive of any
alternative formal method of evaluation which would not, thereby, also provide
an alternative formal semantics of binary predicate logic, and thus make the
equivalence go through under that semantics.

Closely related to the notion of case relations is the frame-based notion of
slots or roles associated with a concept, such as the parts of a thing or the
participants in a situation. As Hayes (1979) points out, roles can be viewed as
relaticns or Skolem functions, and as such are logically unproblematic. However,
one representational feature of frames emphasized by Minsky (1975) is that they
supply default characterictics for the object types they describe and their frame
siots (roles}. So, for instance, elephants are gray and have a rope-like tail by de-
fault, though specific exceptions (such as a white elephant with a deformed tail,
or none at all) are permitted. (Much the same idea lies at the heart of prototype
theory.) Are the network (or frame) representations of defaults beyond the pale
of logic, and so a counterexample to the claimed representational equivalence?

Well again, the answer is that if we can find a formal way of making sense
of defaults in role-structured nets (or frames), we’ll also have a way of doing
so for a linearized, “logical” representation of those defaults. There is nothing
magical about drawing an arc labelled DEFAULT-V from the COLOR slot
for the TYPICAL-ELEPHANT to GRAY, instead of writing down DEFAULT-
V(COLOR(TYPICAL-ELEPHANT)) = GRAY. However, there is something
slightly magical about drawing conclusions from either of these representations,
without being able to say under what conditions “Elephants are typically gray”
is true (which, as a matter of fact, it is}. A good deal of effort is being devoted
wt Al and in linguistic semantics to this profound semantic puzzle; if and when
this effort succeeds, we will also know what the correct net/logic mapping for
default characterizations is.

In general, there is finicky work to be done in finding just the right logics
to serve as isomorphic images of various network formalisms. For instance, the
formalism in Schubert (1976) contains quantifier and operator scope conventions




which generalize Skolem dependencies in a way that is not entirely trivial to map
isomorphically into an ordinary logical format. More interestingly, it is easy
to define network syntax so as to permit cycles, which, on a “subexpression”
interpretation of network edges, cannot occur in an ordinary logical syntax.
However, one can extend ordinary logical syntax in the following way. Introduce
a set of formula labels py, pa, ..., where the last element of each formula is to
be a formula label (i.e., this last element comes immediately after the usual
constituents of the formula). Thus, for instance, we write (loves John Mary py)
rather than (loves John Mary). Labels of otherwise distinct formulas must also
be distinct, and labels of otherwise identical formulas must also be identical.
Furthermore, in forming any compound formula, the labels of the embedded
formulas must be used in place of the formulas themselves. Thus we write

(A p1 p3 pa), (loves John Mary py), (loves Mary John ps), (~ p2 p3)
instead of
(A (loves John Mary) (~ (loves Mary Jokn))).

Formulas are regarded as asser.ed only if their labels do not occur elsewhere.
Thus, only ps above is regarded as asserted. It is easy to sez how to formally
interpret formulas of this new type, as long as there is no cyclic reference to
formula labels. However, consider the following pair:

(D true py p2), (~ p1p1)

Here p, is asserted; it says that truth implies p; (assuming frue is an atomic
formula interpreted as truth), and so asserts p;. But p; says that p; is not the
case, and so denies itself. Thus, we have a paradox.

This extended logic models potentially cyclic semantic nets in an obvious
way, and reflects the potential for paradox in such nets. Again, however, this
does not create any problem for isomorphism between nets and logic. Rather,
it creates a problem for the semantics of both nets and the corresponding logic.
Any formal semantics successfully addressing this problem in one formalism will
immediately address it in the other, as well. (The non-well founded set theory of
Aczel, 1986, or the truth-revision theory of Gupta, 1987, may perhaps provide
a basis for a solution.)

3 Computational Proprerties, and a State-of-
the-Art System

The clustering of properti<s around concepts, and the incorporation of inher-
itance hierarchies, have often been held up as the most significant features of
semantic nets; and so they are. The trouble, from a terminological standpoint, is
that neither of thes. features is at this stage still distinctive of semantic nets. On
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The same point applies, e.g., to property inheritance. A lcgical view of the
inference that

(color Clyde gray)
for instance, based on
(elephant Clyde), (Y £(D (elephant z) (color z gray)))

would again involve “nearby” s-net vertices, and might well be facilitated by
the previous sort of hash-indexing under (predicate, argument) pairs such as
{elephant, Clyde), (elephant, 8), (color, $), and (color, gray), with an inference
strategy that pays special attention to “type predications” such as (elephant
Clyde), accessing information about the type via index (elephant, §). (“%" is
here used as a uniform variable token, for hash purposes.) This strategy can he
improved upon (e.g., deHaan & Schubert 1986), but whether one regards the
improved strategy as a logical inference strategy or a semantic net strategy is
purely a matter of terminological preference.

These issues have been very much on my mind in the choice of terminology
for describing ECOLOGIC, an inferential knowledge base recently implemented
at the University of Alberta (see Schubert & Hwang 1989, 1990). The system is
intended to support a general narrative understanding and question answering
system. (ECO derives from English COnversation, and LOGIC from the sys-
tem'’s logical soul.) The logic is intensional, probabilistic (allowing unreliable
generalizations and degrees of belief), and rather close to English surface struc-
ture. ECOLOGIC incorporates many features of its predecessor, ECONET,
which we still hesitantly termed a semantic net: a concept-centered, topic-
oriented retrieval mechanism, type and topic hierarchies, and a general goal-
directed inference mechanism aided by several “specialists” that shortcircuit
temporal, taxonomic, set and number inferences (Miller & Schubert 1988). In
addition it performs input-driven inference, working out the probable conse-
queces and explanations of logical-form inputs. Both systems are able to infer
answers to questions such as “Did the wolf eat a person?”, and “Does Grand-
mother live in a shoe?” based on a simplified, logically encoded version of Little
Red Riding Hood. The new system, however, also anticipates that Little Red
Riding Hoed is probably in danger when she meets the wolf, and makes many
other inferences spontaneously which could previously be obtained only in goal-
directed fashion.

Though the “semantic competence” of our most recent system thus improves
over our previous ones, we now generally avoid the term “semantic net”. Already
in the design of ECONET, we ceased drawing our propositions as graphs; the
propositions in the new, enriched syntax (admitting restricted quantification,
lambda abstraction, and nominalization, among other things) would be even less
readable when depicted by swirling lines rather than formulas. This seemingly
insignificant fact greatly diminished our disposition to think in semantic net
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terms, Perhaps the last straw was the fact that input-driven inference can
be quite effectively implemented by hash-table methods of the sort mentioned
above — an access method not particularly indebted to semantic net theory.

4 What’s Left?

To say that semantic nets, in the broadest sense, lack distinctive representational
and computational properties is not to sav that the term should be expunged
from the Al lexicon. (Far be it from me to advocate lexical depletion.) There
are some promising, and quite familiar, directions for useful redeployment of
the term. »

One possibility, which I discussed in (Schubert 1976), is to reserve it for the
graphical depictions of propositional information we find helpful in conceiving
or explaining certain inferential processes. (As such, they would be viewed as
analogous to Venn diagrams in set theory.) However, [ doubt that many people
are ready to think of semantic nets as mere pictures, however strongly they may
feel about the advantages of node-and-link diagrams or nested boxes. That is
why I set aside the diagrammatic aspect from the outset. A better possibility
is to reserve the term for propositional representations which, like Quillian’s
original networks, make essential use of spreading activation or similar propa-
gation processes for inference or understanding. This use may be compatible
with some of the current work in neural nets (inasmuch as this work also de-
pends upon concept-to-concept signal propagation). A third is to reserve it for
special-purpose graphical structures and their associated inference mechanisms,
such as taxonomic hierarchies, parts hierarchies, or time graphs. These have, of
course, proved very useful as enhancements to general propositional inference
systems.

With regard to this last possibility, I need to emphasize two things. First, a
representation is graphical in the sense I intend only if it uses graph-theoretic
notions in an essential, nontrivial way. The mere possibility of depicting a
representation in node-link form does not, in itself, demonstrate that the rep-
resentation is intrinsically graphical; nor does the use of an inference strategy
which prefers to combine closely linked facts necessarily show this; whereas sys-
tematic reliance on formally defined distance metrics or topological propertics
(connectivity, cycles, classes of paths, etc.) for inference (deduction, analogy,
associative retrieval, etc.) may indeed do so.

Secondly, I need to emiphasize the distinction beiween graph-based auxiliary
representations on the one hand, and the larger, more general inference sys-
tems which incorporaie them on the other. If 've were to call a representation
a semantic net merely because it incorporates a taxonomic subsystem (say, to
support property inheritance), we would revert precisely to the practice I am de-
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crying! The point is that a taxonomic (or temporal, etc.) reasoner which makes
essential use of nontrivial graph-theoretic properties is, on account of that, a
member of an important and objectively distinguishable species of knowledge
representation. A system which merely incorporates some such special reasoner
is, nowadays, a system like any other.
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